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The process which leads to the appearance of three-dimensional vortex structures in
the oscillatory flow over two-dimensional ripples is investigated by means of direct
numerical simulations of Navier–Stokes and continuity equations. The results by Hara
& Mei (1990a), who considered ripples of small amplitude or weak fluid oscillations,
are extended by considering ripples of larger amplitude and stronger flows respectively.
Nonlinear effects, which were ignored in the analysis carried out by Hara & Mei
(1990a), are found either to have a destabilizing effect or to delay the appearance
of three-dimensional flow patterns, depending on the values of the parameters. An
attempt to simulate the flow over actual ripples is made for moderate values of the
Reynolds number. In this case the instability of the basic two-dimensional flow with
respect to transverse perturbations makes the free shear layer generated by boundary
layer separation become wavy as it leaves the ripple crest. Then the amplitude of the
waviness increases and eventually complex three-dimensional vortex structures appear
which are ejected in the irrotational region. Sometimes the formation of mushroom
vortices is observed.

1. Introduction
A model able to provide a complete and accurate description of the three-

dimensional oscillatory flow induced by sea waves close to steep ripples is not
available. However a detailed knowledge of this flow and in particular of the dynam-
ics of the vortex structures generated by flow separation at ripple crests is necessary
to understand important phenomena which take place close to the sea bottom, such
as for example sediment transport. Indeed, flow visualizations along with an analysis
of sediment trajectories (see among others Nielsen 1979) show that for typical field
conditions, during the accelerating phases, it is the combined action of the attached
boundary layer along the stoss side of the ripple and of the vortex structure generated
by flow separation at the ripple crest that creates a small cloud of sediment just above
the lee side of the ripple. Later, even though the flow decelerates, the vortex structure
strengthens, the size of the recirculating cell increases and more sediment tends to be
piled up at the ripple crest. Then the flow reverses and a lot of sediment is carried
into suspension far from the bottom leaving the ripple profile at the crest, because it
is trapped by the vortex structure which is convected by the local velocity. Later, the
strength of the main vortex structure decays because of viscous effects and the gravity
force prevails over drag forces and sediment is slowly released along the bed profile.
In the meantime, a new vortex structure is generated and after half a wave period,
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the flow and concentration distribution are the mirror images of those displayed at
the beginning.

A traditional approach to describing particle dispersion in turbulence is to regard
the phenomenon as a Fickian diffusion process. However, attempts to estimate the
turbulent-exchange coefficient have not been successful and it has not been possible to
establish any simple empirical relationship between this apparent turbulent-exchange
coefficient and flow parameters. Since this kind of process is dominated by the
convection of sediment by the vortex structures generated by the separation of the
bottom boundary layer, it is our opinion that in order to describe the dynamics of
sediment particles, it is first necessary to understand vorticity time development.

Some attempts to understand vorticity dynamics in an oscillatory flow close to a
rippled bed have been performed by among others Sleath (1974), Sato, Mimura &
Watanabe (1984), Longuet–Higgins (1981), Smith & Stansby (1985), Shum (1988),
Blondeaux & Vittori (1991) (see also the works quoted in the above papers) by using
finite-difference schemes, discrete vortex methods and pseudo-spectral approaches.
The movement of sediment grains has been described by Hansen, Fredsøe & Deigaard
(1994) who used a ‘cloud-in-cell’ method to determine the time development of the
vortex structures generated by boundary layer separation and a Lagrangian approach
to visualize sediment motion. However, all the above works assume the flow to be two-
dimensional and therefore the breakdown of the two-dimensional vortices into smaller
three-dimensional structures which eventually dissipate is not described. Hence, such
models require heuristic approximations to bring the results into agreement with
laboratory and field data.

A theoretical attempt to understand the process which leads to a three-dimensional
flow over a two-dimensional bottom configuration has recently been made by Hara &
Mei (1990a) who studied the hydrodynamic stability of the basic two-dimensional flow.
To solve the problem by analytical means Hara & Mei (1990a) performed a linear
analysis, i.e. they considered the time development of small (strictly infinitesimal)
perturbations of the basic flow, and analysed two cases: case (i) is characterized
by weak fluid oscillations over ripples of finite slope, case (ii) considers moderate
fluid oscillations over ripples characterized by very gentle slope. Above some critical
conditions, Hara & Mei (1990a) found that the basic flow is unstable with respect to
three-dimensional spanwise perturbations because of the centrifugal forces induced
by the curvature of the boundary layer (Taylor–Görtler instability). In case (i), the
three-dimensional disturbances are localized in a small region close to ripple crests
or ripple troughs depending on the parameters of the problem. In case (ii), three-
dimensional perturbations grow which are spatially harmonic (periodic within one
wavelength of the two-dimensional ripples) or subharmonic (periodic within twice the
wavelength of the two-dimensional ripples) depending on the mode of instability.

Hara & Mei (1990a) suggest that the latter case is important to understand
the process which leads to the appearance of brick-pattern ripples which are a
bottom configuration characterized by long crests transverse to fluid motion and by
longitudinal bridges spanning the ripple troughs. Indeed, Hara & Mei (1990a) showed
that in case (ii) steady streaming is induced which would tend to accumulate sand
particles in a pattern which suggests the initiation of brick-pattern ripples. Another
possible mechanism leading to the formation of brick-pattern ripples was pointed
out by Vittori & Blondeaux (1992). They showed that brick-pattern ripples can be
originated by the simultaneous growth of two-dimensional and three-dimensional
perturbations of the bottom which interact with each other with a mechanism similar
to that described by Craik (1971) in a different context. As pointed out by Mei & Liu
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(1993) and Blondeaux & Vittori (1999), the unstable modes considered by Hara &
Mei (1990a) and those studied by Vittori & Blondeaux (1992) are not characterized
by wavelengths of a different order of magnitude and in nature it is likely that the
two mechanisms coexist, interact and complement each other. Hence, they should
be combined for a full understanding of the process leading to brick-pattern ripple
formation.

The results obtained by Hara & Mei (1990a) concerning the transition from a
two-dimensional to a three-dimensional flow apply to ripples of small amplitude or
to weak flows. For arbitrary values of the parameters, nonlinear effects are relevant
and it is likely that the scenario of transition to a three-dimensional flow becomes
richer and more complicated than that sketched by Hara & Mei (1990a). To have
a better understanding of the dynamics of the three-dimensional vortex structures
generated by the instability of the bottom boundary layer, in the present paper
we compute the three-dimensional flow induced by an oscillating uniform pressure
gradient close to a rippled bed. First, values of the parameters are considered close
to those investigated theoretically by Hara & Mei (1990a). However, both fluid
oscillations of large amplitude and large ripple heights are considered here such that
the bottom boundary layer separates at the ripple crests and nonlinear effects are
significant. The results obtained show that flow separation has a strong influence on
the growth of three-dimensional perturbations of the basic two-dimensional flow field.
In particular, nonlinear effects are found either to have a destabilizing effect or to
delay the appearance of three-dimensional flow patterns, depending on the values of
the parameters. The dynamics of the three-dimensional vortices are then investigated
and the flow due to their interaction with the two-dimensional vortex structures is
visualized and analysed. Finally, values of the parameters close to those characterizing
actual sea ripples are considered. From knowledge of the velocity field, the dynamics
of sediment grains and the time development of the bottom configuration can be
inferred.

The structure of the rest of the paper is the following: in the next section the
problem is formulated and the numerical procedure is presented. Then the basic two-
dimensional oscillatory flow over steep ripples is briefly described by recovering some
of the results of Blondeaux & Vittori (1991). In § 3, the appearance and development
of three-dimensional perturbations is investigated and a comparison with the results
by Hara & Mei (1990a) is made. In § 4, the numerical code is used to describe
the three-dimensional oscillatory flow for values of the parameters typical of active
ripples even though only moderate values of the Reynolds number are considered.
The conclusions together with possible developments of the study are described in
§ 5.

2. The problem and the numerical approach
Let us consider the flow of an incompressible viscous fluid of density ρ∗ and

kinematic viscosity ν∗, above a two-dimensional wavy bottom which is rigid and
smooth (hereinafter a star denotes dimensional quantities). The ambient fluid, far
from the bottom, oscillates harmonically in the direction transverse to the crests of
the waviness. As a reference, we define a Cartesian orthogonal coordinate system
(x∗, y∗, z∗) with the y∗-axis pointing vertically upwards, the x∗- and z∗-axes normal
and parallel to the ripple crests lying on a horizontal plane coincident with the
average bottom as shown in figure 1.

Let us describe the ripple surface y∗ = F(x∗) parametrically by means of the
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Figure 1. Sketch of the bottom configuration.

following relationships (Sleath 1984):

y∗ =
h∗

2
cos(k∗ξ∗), x∗ = ξ∗ − h∗

2
sin(k∗ξ∗), (2.1)

where k∗ = 2π/l∗ is the wavenumber of the waviness, h∗ is its height and ξ∗ is
a dummy variable. As observed in real ripples, the bed profile (2.1) exhibits crests
sharper than troughs (see figure 1).

The equations governing the fluid motion are written in terms of the orthogonal
coordinate system (ξ∗, η∗, χ∗) defined by the following relationships (Sleath 1973):

ξ∗ = x∗ +
h∗

2
e−k

∗η∗sin(k∗ξ∗), η∗ = y∗ − h

2
e−k

∗η∗ cos(k∗ξ∗), χ∗ = z∗, (2.2)

which map the bottom profile onto the plane η∗ = 0. Moreover, the following
dimensionless variables are introduced:

(ξ, η, χ) =
(ξ∗, η∗, χ∗)
(U∗o/ω∗)

, t = t∗ω∗, (2.3)

(vξ, vη, vχ) =
(v∗ξ , v∗η , v∗χ)

U∗0
, p =

p∗

ρ∗(U∗0 )2
, (2.4)

where t∗ is time, (v∗ξ , v∗η , v∗χ) are the velocity components along the ξ∗-, η∗-, χ∗-axes
respectively and p∗ is pressure. In (2.3), (2.4) U∗0 and ω∗ are the amplitude and
the angular frequency of fluid velocity oscillations far from the bottom respectively.
The non-dimensional momentum and continuity equations read (Batchelor 1967,
p. 588)
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where J is the Jacobian of transformation (2.2):

J = 1 +

(
hk

2
e−kη

)2

− 2
hk

2
e−kη cos(kξ) (2.9)

and Re is the flow Reynolds number defined as

Re =
(U∗0 )2

ν∗ω∗
. (2.10)

The problem is then closed by boundary conditions which force the fluid to oscillate
harmonically far from the bottom

lim
η→∞(vξ, vη, vχ) = (sin(t), 0, 0) (2.11)

and to be at rest along the ripple profile

(vξ, vη, vχ) = (0, 0, 0) for η = 0. (2.12)

The problem formulated above is solved numerically in a rectangular box following
a procedure which makes use of finite-difference approximations and is a variant of
the fractional-step method described for example in Kim & Moin (1985), Orlandi
(1989) and Vittori & Verzicco (1998). The quantities Lξ , Lη and Lχ denote box sizes in
the ξ-, η- and χ-directions respectively. Since an integer number of ripple wavelengths
is simulated, periodic boundary conditions are forced along the ξ-direction. Periodicity
is also forced in the transverse direction χ, which is assumed to be a homogeneous
direction. Finally, at the upper face of the computational box it has been assumed
that

vη = 0,
∂vξ

∂η
=
∂vχ

∂η
= 0. (2.13)

As described in Kim & Moin (1985), the fractional-step method is an approximation
of evolution equations based on the decomposition of the operators they contain. In
applying it to Navier–Stokes equations, the role of the pressure term is to project
an arbitrary vector field onto a divergence-free vector field. Using a two-step time
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advancement scheme, the finite counterpart of equations (2.5)–(2.8) can be written as

v̂i − vni
∆t

= 1
2
(3Hn

i −Hn−1
i )− Gi(pn) +

1

2Re
[Li(v̂i) + Li(v

n
i )], (2.14)

vn+1
i − v̂i

∆t
= −Gi(φn+1), (2.15)

with

D(vn+1
i ) = 0. (2.16)

In (2.14)–(2.16), vi represents one of the velocity components along the orthogonal
axes (ξ, η, χ), the indices n and n+ 1 refer to the values which the variables assume
at time tn = n∆t and tn+1 = (n + 1)∆t respectively and the hat symbol indicates
an intermediate velocity field which in general is not divergence free. Moreover, Hi

represents the convective terms, while Li and Gi represent the discrete finite-difference
operators describing the viscous terms and the gradient of a scalar quantity along the
three orthogonal axes. Finally, D is the finite-difference operator of the divergence of
a vector quantity. It is worth pointing out that the operators H1 and H2 also contain
parts of the viscous terms which are[

∂vη

∂ξ

∂J

∂η
− ∂vη

∂η

∂J

∂ξ

]/
(ReJ2) and

[
∂vξ

∂η

∂J

∂ξ
− ∂vξ

∂ξ

∂J

∂η

]/
(ReJ2)

respectively. The scheme outlined in (2.14)–(2.16) uses the second-order-explicit
Adams–Bashforth scheme for the terms Hi and the second-order-implicit Crank–
Nicholson scheme for the terms Li. Implicit treatment of the viscous terms eliminates
the numerical viscous stability restriction which may be particularly severe close to
the wall where a stretched mesh is used. Indeed, to have a better description of the
velocity gradients which are larger close to the wall, the coordinate η̃ is introduced

η̃ = ln

(
η + a

a

)
(2.17)

(a is a stretching parameter to be fixed suitably) and a uniform grid spacing is used
along η̃. The staggered grid shown in figure 2 is used (Harlow & Welch 1965). The
momentum equations are evaluated at velocity nodes while continuity is enforced
at the centre of each cell. One important advantage of using a staggered mesh for
incompressible flows is that ad hoc pressure boundary conditions are not required.
All the spatial derivatives in the momentum equations are approximated with second-
order central finite differences.

To determine v̂i by means of equation (2.14), the inversion of large sparse matrices
is required. However, using an approximate factorization technique, equation (2.14)
can be reduced to a tridiagonal form with a significant reduction in computing cost
and memory (Kim & Moin 1985). Finally, the pressure field is computed using the
relationship

pn+1 = pn + φn+1 − D(v̂i)

2Re
, (2.18)

once the scalar φn+1 is determined by means of the Poisson equation derived combining
(2.14)–(2.16). The Poisson equation is solved by using a spectral method in the χ-
direction and finite-difference approximations in the ξ- and η-directions. Indeed,
because periodic boundary conditions are forced in the χ-direction, the function φn+1
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Figure 2. Sketch of the numerical grid.

is expanded in the form

φn+1 =

M∑
m=−M

φn+1
m (ξ, η)eikmχ. (2.19)

By approximating the spatial derivatives appearing in the equation for φn+1
m with

their finite counterparts, linear algebraic bandwidth systems are derived which can be
solved by means of a Gauss elimination approach. All the computations have been
carried out on a workstation powered by an alpha-600 processor.

To test the reliability and the accuracy of the numerical code, results have been
obtained by forcing the flow to be two-dimensional and comparing the numerical
predictions with previous numerical simulations and analytical solutions. Good agree-
ment is found when the present results are compared with those by Blondeaux &
Vittori (1991) who solved the two-dimensional case using the vorticity–stream func-
tion formulation. Indeed, the plots shown in figure 3, where the time development of
vorticity during a cycle is shown for l = 1.333, h = 0.2, Re = 1250, do not differ from
those shown in figure 6 of Blondeaux & Vittori’s (1991) paper. The present results
have been obtained with Nξ = 120, Nη = 120, Lη = 1.333 and a = 0.136 (Nξ , Nη

and Nχ denote the number of grid points in the ξ-, η- and χ-directions respectively).
The dynamics of the vorticity, which is typical of ripples under sea waves, can be
summarized as follows. At the beginning, clockwise vorticity is generated along the
bed profile and in particular at the crests of the ripple. Increasing t, the boundary
layer thickens on the downstream side of the crest till the flow separates (figure 3c).
Then the vorticity rolls up and creates a well-defined vortex structure. In the second
half of the cycle, the main vortex structure is no longer reinforced but it is simply
convected away by local velocity. Meanwhile, the counterclockwise vorticity, which is
induced by the combined action of the free-stream flow and of the clockwise vortex
structure, creates a new vortex which couples with the old one forming a vortex pair
which travels away because of the self-induced velocity. Then further counterclock-
wise vorticity is generated and when the flow reverses its direction again a new vortex
is present near the crest and the phenomenon repeats similarly. These main features
of vorticity dynamics are characteristic of steep ripples and large fluid displacement
oscillations and were described by Longuet–Higgins (1981), Smith & Stansby (1985)
and other authors.
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Figure 3. Spanwise vorticity time development for l = 1.333, h = 0.2, Re = 1250. Here and in
all subsequent similar figures the thinner lines denote clockwise vorticity and the thicker lines
anticlockwise. Here ∆ωχ = 3.75. (a) t = π/4, (b) t = π/2, (c) t = 3π/4, (d) t = π, (e) t = 5π/4,
(f) t = 3π/2, (g) t = 7π/4, (h) t = 2π.

Good agreement has also been found between the present results and the analytical
solutions by Vittori (1989), Blondeaux (1990) and Hara & Mei (1990b). An example is
shown in figure 4 where the computed steady streaming induced by a weak oscillatory
flow over steep ripples is plotted for l = 20.96, h = 3.333, Re = 100 along with the
results obtained by Hara & Mei (1990b) who assumed infinitesimal values of the
ratio U∗0/(ω∗l∗) = 1/l between the amplitude of fluid displacement oscillations and
ripple wavelength. The present values of the stream function ψ are numerically
obtained using the relationship vξ = (∂ψ/∂η)/

√
J . The results plotted in figure 4 are
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Figure 4. Steady component of the stream function ψ for l = 20.96, h = 3.333, Re = 100.
(a) Hara & Mei’s (1990b) results, (b) present results (∆ψ = 0.00628).

for the following values of the parameters of the numerical code Nξ = 64, Nη = 64,
Lη = 20.96, a = 0.110 and the simulation has been carried out up to 19 cycles.
Even though the present results and those obtained by Hara & Mei (1990b) agree
well from a qualitative point of view, there is some discrepancy when a quantitative
comparison is made. The overall good accuracy of the numerical approach results
from the following points: (i) the results of figure 4 are obtained for 1/l equal to
about 0.048; (ii) the present results come from the solution of the full problem; (iii)
the perturbation expansion used by Hara & Mei (1990b), which is based on the
assumption of infinitesimal values of 1/l, is truncated after two terms and ignores
contributions of O(1/l2); (iv) the steady stream function plotted in figure 4 is of
O(1/l). Therefore, the results of figure 4(a) are expected to differ from those of figure
4(b) by an amount of order 1/l2, because of the terms ignored in Hara & Mei’s
(1990b) analysis. A quantitative comparison between figures 4(a) and 4(b) shows that
relative differences of about 5% are present. Taking into account that the steady
component of the stream function is of order 1/l, it can be safely concluded that the
relative error of the numerical approach is of O(10−2/l), i.e. O(10−3).

3. Instability of the basic two-dimensional flow
Up to now the flow has been assumed two-dimensional and the χ-component of

velocity has been inhibited in the numerical code. However, the theoretical investiga-
tion by Hara & Mei (1990a) shows that the two-dimensional oscillatory flow over a
rippled bed may be unstable with respect to three-dimensional perturbations and a
three-dimensional flow can develop. By analysing weak fluid oscillations over ripples
of finite slope (case (i)), Hara & Mei (1990a) found that three-dimensional distur-
bances can grow which are localized in a small region either along the crests or along
the troughs depending on ripple slope. When finite fluid oscillations are considered
and the ripple slope is small (case (ii)), the region affected by flow instability becomes
comparable with ripple wavelength and disturbances along adjacent ripples interact
with each other. Both in case (i) and in case (ii), the parameters of the problem were
chosen by Hara & Mei (1990a) in such a way that nonlinear effects are weak and
the basic flow does not separate from ripple crests. Since boundary layer separation
is one of the peculiar characteristics of the oscillatory flow over actual ripples, one
of the main aims of the present work is to investigate how the results described by
Hara & Mei (1990a) change when flow separates at ripple crests and nonlinear terms
are not negligible.
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Let us start by considering values of the parameters close to those of case (ii),
i.e. finite values of the ratio between the amplitude of fluid displacement oscillations
and ripple wavelength, but let us remove the assumptions introduced by Hara &
Mei (1990a) of infinitesimal ripple steepness and infinite values of the Reynolds
number. In this case the analysis by Hara & Mei (1990a) suggests that both spatially
harmonic and subharmonic disturbances in the streamwise direction with respect to
ripple wavelength can grow. Therefore, the size Lξ of the computational box in the
streamwise direction has been fixed equal to two ripple wavelengths. Because the
results of different authors show that at a distance equal to l∗ from the bottom,
the flow differs by a small amount from the oscillating free-stream velocity, the
dimensionless height Lη of the computational box has been fixed equal to l. Finally,
different widths Lχ have been considered as discussed more widely in the following.
If not otherwise specified 120 and 80 points have been used in the streamwise
and vertical directions respectively and the stretching parameter a has been fixed
in such a way that the first numerical cell has a height less than or equal to
0.1 δ∗. The above number of grid points allows a fair description of the basic
two-dimensional flow to be obtained. Indeed, by repeating some of the runs with
a larger number (Nξ = 160 and Nη = 110), it has been verified that the results
presented in the following are not affected by the number of grid points. In all the
runs the time step ∆t has been fixed equal to 0.002. A few simulations have been
repeated with ∆t = 0.001 and no significant difference has been observed in the
results.

The stability analysis by Hara & Mei (1990a) considers small (strictly infinitesimal)
three-dimensional perturbations and hence different transverse modes evolve indepen-
dently. In order to compare the present results with those of Hara & Mei (1990a), a
first set of runs was performed using four points in the spanwise direction and varying
Lχ in the range (0, 2.5). These runs mimic the growth of transverse perturbations
characterized by a small amplitude and by a wavenumber in the χ-direction equal to
2π/Lχ. However, they cannot provide any information on the equilibrium flow config-
uration which is attained after the growth of the perturbations. Indeed, the presence
of four points in the transverse direction allows only the three-dimensional distur-
bance with wavelength equal to Lχ to be simulated. When the perturbation attains a
large amplitude, nonlinear effects would tend to generate ultraharmonic components
which cannot be simulated. Tests performed with eight or 16 grid points in the
transverse direction have shown that the use of four points allows reliable results to
be obtained as long as the perturbation amplitude remains small. A similar approach
was used by Akhavan, Kamm & Shapiro (1991) when studying the stability of the
oscillatory boundary layer over a flat wall with respect to transverse perturbations
characterized by a small amplitude. The results obtained for l = 1.57 and Re = 2000
are summarized in figure 5 where the abscissa is the transverse wavelength of the
three-dimensional perturbations simulated by the code and the vertical coordinate is
the quantity T = h

√
Re/(2l2) which is equal to the Taylor number of the basic flow

as defined by Hara & Mei (1990a). It is recalled that the Taylor number measures
the importance of centrifugal effects with respect to the viscous ones. The growth or
decay of the perturbation, suitably inserted at the beginning of the simulation, has
been judged by looking at the time behaviour of the specific energy Eχ, where Eχ is
defined as

Eχ(t) =
1

LχLξ

∫ Lξ

o

∫ Lχ

o

∫ Lη

o

v2
χJ dχ dη dξ. (3.1)
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Figure 5. Stable �, unstable � and marginal two-dimensional oscillatory flows over
small-amplitude ripples (l = 1.57, Re = 2000). Curves A and B are the theoretical marginal
curves predicted by Hara & Mei (1990a) for mode 1-type II and mode 2-type III respectively.
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Figure 6. As figure 5 but for Re = 4000.

While for stable two-dimensional flows the value of Eχ tends rapidly to vanish, for
the unstable ones Eχ grows and after a short time explodes because of the absence
of the nonlinear effects able to damp the amplification of the perturbation. Some
problems have been encountered in classifying runs characterized by values of the
parameters close to the marginal conditions. In these cases, Eχ is characterized by
a long transient during which large fluctuations take place. Hence, it turns out to
be difficult to discriminate between stable and unstable conditions. To avoid any
subjective judgement, in figure 5 the runs have been grouped in three classes. The
first class is such that the value of Eχ after ten periods (Eχ(20π)) is less than the
initial value Eχ(0) divided by 5. The runs characterized by Eχ(20π) larger than 5Eχ(0)
belong to the second class. Lastly, runs such that Eχ(0)/5 < Eχ(20π) < 5Eχ(0) belong
to the intermediate class. To compare the present simulations with Hara & Mei’s
(1990a) findings, the three sets of data have been classified as stable, unstable and
marginal respectively even though these definitions should be treated with caution
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for the reasons previously explained. To facilitate the comparison with the results
by Hara & Mei (1990a), their theoretical curves for the most unstable modes are
also plotted in figure 5. Curve A corresponds to the case defined by Hara & Mei
(1990a) as mode 1-type II, while curve B is that of mode 2-type III. According to
the analysis of Hara & Mei (1990a), when the Taylor number is larger than a critical
value provided by curves A and B, the flow turns out to be unstable with respect to
transverse perturbations which on the other hand decay when the Taylor number is
smaller than its critical value. From figure 5 it clearly appears that the flow we are
analysing is much more unstable than that considered by Hara & Mei (1990a). This
finding can be explained by considering that the basic flow, the stability of which we
are investigating, differs from that studied by Hara & Mei (1990a). In fact, to linearize
Navier–Stokes equations and to work out the basic flow by analytical means, Hara
& Mei (1990a) considered infinite values of Re and infinitesimal ripple slopes such
that the quantity h

√
Re/l2 is of order one. Here, a finite value of Re (Re = 2000) is

considered, hence the ripple slope inducing the growth of transverse perturbations is
not small and causes the separation of the basic two-dimensional flow at the ripple
crest and the generation of large vortex structures. Lastly, for the largest values of h,
the flow becomes chaotic through a Feigenbaum scenario (Feigenbaum 1978, 1979,
1980) as discussed by Vittori & Blondeaux (1991). In figure 6, results similar to those
shown in figure 5 are plotted for l = 1.57 and Re = 4000. This set of runs is closer to
Hara & Mei’s (1990a) assumptions because of the larger value of Re. Comparing the
results of figure 6 with those of figure 5, it appears that an increase of the Reynolds
number makes the transition between stable and unstable flows move slightly towards
the theoretical predictions by Hara & Mei (1990a). However, the present numerical
results still significantly differ from the theoretical curves of Hara & Mei (1990a). No
further attempt to find a better agreement by considering very large values of Re has
been performed because for large values of the Reynolds number the flow is expected
to become turbulent as discussed in Vittori & Verzicco (1998).

Some of the runs which have led to the results shown in figure 5 have been
repeated by using 32 points in the spanwise direction, thus looking for the equilibrium
configuration reached by the unstable flow. Results obtained with Nχ = 48 are
practically indistinguishable from the previous ones. In figure 7, the value of Eχ
defined by (3.1) is shown versus time for l = 1.57, Re = 2000, h = 0.12, Lχ = 0.8.
It clearly appears that the energy of the perturbation, inserted at the beginning of
the simulation, rapidly grows and attains a regime behaviour which is characterized
by irregular fluctuations around an average value. The aperiodic behaviour of the
perturbation is due to its nonlinear interaction with the basic flow. To gain an idea
of the flow field which is set-up after the growth of the transverse perturbations, the
vorticity component in the streamwise direction is computed and plotted in figure 8
at different phases during the cycle for a fixed value of y. The flow development is
described during the 16th cycle when a steady oscillatory state is attained. However,
for the sake of simplicity only the phase within the cycle is given in the figure
caption. Perturbations, which are spatially subharmonic in the x-direction, are clearly
detectable. Indeed, the spatial distribution of ωx is characterized by patches which
repeat every ripple, shifted in the χ-direction by Lχ/2 between adjacent series. It is
difficult to provide an exhaustive description of the flow since many three-dimensional
small vortex structures appear which quickly evolve in time.

In obtaining these results the parameter α = 1/l introduced by Hara & Mei (1990a)
and defined as the ratio between the amplitude of fluid displacement oscillations and
ripple wavelength has been fixed equal to 2/π. For such a value, the theoretical results
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Figure 7. Time development of Eχ for l = 1.57, h = 0.12, Re = 2000, Lχ = 0.8.

by Hara & Mei (1990a) suggest that the steady currents, which are set up by the
growth of the three-dimensional perturbations, would tend to accumulate possible
loose particles lying on a ripple surface in a pattern similar to that characterizing
brick-pattern ripples. Even though the basic flow considered here differs from that
studied by Hara & Mei (1990a) because of strong nonlinear effects, the qualitative
conclusion given above is still valid. Indeed, from figure 9, which shows the distribution
after a cycle of passive tracers uniformly released close to the bottom, it can be seen
that particles are piled up close to ripple crests by the combined action of the attached
flow on the stoss side of the ripple and of the vortex structure generated by boundary
layer separation on the lee side. Particle drift in the ξ-direction is superposed on a
slow movement in the spanwise direction which tends to create patches of low particle
density along ripple troughs, which are Lχ apart. These patches are shifted by half a
wavelength between adjacent troughs. Close to the borders of the low-density regions,
particles tend to be piled up creating periodic patterns of longitudinal bridges, joining
the crests of the ripples. As pointed out in the introduction, this particle pattern
suggests that the centrifugal instability of the basic two-dimensional flow with respect
to spatially subharmonic perturbations can play a role in the mechanism originating
brick-pattern ripples.

The other case considered by Hara & Mei (1990a) (case (i)) is the stability of the
flow induced close to steep ripples by weak fluid oscillations such that 1/l is much
smaller than one and Re is of order l2. In this case, Hara & Mei (1990a) showed
that the disturbances which appear are localized in a small region along one ripple
and gave the threshold of instability in terms of a local Taylor number TL defined as√

2A∗2L /(4π2δ∗R∗L) where A∗L is the amplitude of fluid displacement oscillations at the
wall when viscous effects are ignored. Notice that the value of A∗L varies along the
ripple profile together with the local radius of curvature R∗L of the bottom surface.
Thus, the variation of the local Taylor number along the ripple surface is due to
changes of both R∗L and A∗L which can be easily computed once ripple geometry is
given.

An idea of the variation of the Taylor number along the ripple profile can be
gained from figure 2 of Hara & Mei’s (1990a) paper. For sufficiently large values of
h∗/l∗, the absolute value of the positive maximum of TL is much larger than that
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Figure 8. Plots of ωx in the horizontal plane y = 0.123 for l = 1.57, Re = 2000, h = 0.12, Lχ = 0.8.
(a) t = 0; (b) t = π/4; (c) t = π/2; (d) t = 3π/4 (∆ωx = 0.7).

of the negative minimum and instability occurs first at the crest. This is of course
because the crest has a sharper curvature than the trough for all but very small
values of h∗/l∗. On the other hand, for very small h∗/l∗ the absolute value of the
Taylor number at the crests and at the troughs becomes equal and, as explained in
Hara & Mei (1990a), instability occurs at the trough first. The flow for values of the
parameters close to those considered by Hara & Mei (1990a) cannot be simulated
by our code. In fact, as previously pointed out, Hara & Mei (1990a) assumed the
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Figure 9. Position at t = 34π of loose particles uniformly released close to the bottom at t = 32π
for l = 1.57, Re = 2000, h = 0.12, Lχ = 0.8.

ripple wavelength l to be much larger than 1 and considered values of Re of order l2.
Attempts to satisfy the above conditions lead to thicknesses of the bottom boundary
layer which are too small compared to ripple wavelength to be handled by numerical
means. Moreover, for large values of Re the flow becomes turbulent and no agreement
is expected between numerical simulations and the theoretical predictions by Hara &
Mei (1990a).

However, the results obtained by Hall (1984), who studied the stability of the
oscillatory flow around cylinders of circular section by assuming weak fluid oscillations
and weak viscous effects, show that the growth of three-dimensional perturbations
may be described fairly well by the theoretical analysis even when the amplitude
of fluid oscillations U∗o/ω∗ becomes comparable with the radius r∗ of the cylinder
section. Indeed, the marginal conditions predicted by Hall (1984) compare very well
with those determined experimentally by Honji (1975) even when U∗0/(ω∗r∗) is about
1.5. Therefore, an attempt has been made to compare present numerical findings
with the theoretical predictions by Hara & Mei (1990a) by considering finite values
of ripple steepness but removing the assumptions of infinitesimal values of 1/l and
values of Re of order l2.

Since the theoretical analysis of Hara & Mei (1990a) suggests that the growth of
the perturbations leads to the appearance of Görtler vortices localized around ripple
crests and the vortices close to one crest do not interact with those originating around
adjacent crests, the numerical simulations consider only one ripple wavelength. The
ratio h/l was fixed equal to 0.12, while different values of Re and l were investigated
to determine the region of instability in the plane (Re, 1/l). The width of the

computational box was fixed equal to 2π/(0.36
√
Re) in order to simulate the growth

of the most unstable modes as predicted by Hara & Mei (1990a). In a first set of runs,
attention was focused on the linear growth of the three-dimensional perturbations
and therefore four points in the transverse direction were used. Different values of
Nξ , Nη were employed depending on the values of the parameters of the problem. The
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accuracy of the simulations was verified by repeating some of the computations with
larger values of Nξ and Nη . These simulations provided practically identical results.
The criterion used to discriminate between stable and unstable runs is that previously
described and based on the value assumed by the quantity Eχ after 10 cycles.

Figure 10 shows the simulations for which three-dimensional perturbations of the
basic two-dimensional flow tend to decay and those such that three-dimensional
perturbations grow. In figure 10 the abscissa is the Reynolds number while the
vertical axis displays the quantity 1/l = U∗0/(ω∗l∗). According to Hara & Mei’s
(1990a) analysis, the plane (Re, 1/l) can be divided in a stable region and an unstable
one by curve A obtained by equating the local Taylor number at the crest to its
critical value. For large values of l the flow is stable. When l is decreased and it
becomes smaller than the critical value provided by curve A, the flow turns out to
be unstable. The discrepancy between the results of Hara & Mei (1990a) and those
of present numerical simulations is significant. However, in making the comparison
it should be taken into account that in Hara & Mei’s (1990a) analysis, the fluid
displacement is supposed to be very small compared to ripple wavelength and the
perturbations are supposed to evolve around ripple crests and to feel the radius of
curvature of the crests only. On the other hand, for the simulations which have
been carried out, the perturbations are convected along the ripple surface and feel
different radii of curvature. To account for this fact, a new curve is drawn in figure
10 (curve B) which is obtained by defining an average value of the Taylor number
equal to

h
√
Re

2l2
1

2π

∫ 2π

0

cos(ξ̂)− π(h/l)

[1− 2π(h/l)cos(ξ̂) + π2(h/l)2]5/2
dξ̂ (3.2)

and equating it to the critical value. If the results of the numerical simulations are
compared with curve B, the agreement is much better, in particular when large values
of Re are considered.

The present numerical simulations show also that on decreasing the Reynolds
number, the critical value of l decreases and the stable region widens and becomes
larger than that predicted by Hara & Mei (1990a). In particular, for Re smaller than
about 600 the flow appears to be stable whatever value of l is considered. Flow
separation, which for fixed values of Re appears when small values of l are simulated,
is the cause of the appearance of a stable region in the upper part of the (Re,
1/l)-plane. Indeed, for fixed values of the parameters of the problem, the curvature
of the streamlines close to ripple crests is smaller for a separated flow than that
characterizing an unseparated flow and hence the local Taylor number of a separated
flow is smaller than that of an unseparated one. Therefore, transverse perturbations
of separating flows damp out.

As previously pointed out, the runs shown in figure 10 have been performed using
four points in the transverse direction to investigate the growth of the perturbations
in the linear regime. Some of the runs have been repeated using 16 points in the
transverse direction and 160, 120 in the streamwise and vertical directions respectively
to describe the equilibrium attained by the flow after the growth of the transverse
perturbations. By performing computations with Nχ = 32, Nξ = 160 and Nη = 120
it has been found that the differences are negligible. For example, the values of Eχ
obtained during a cycle with Nχ = 32 differ by a negligible amount from those
obtained with Nχ = 16. Similar results have been obtained by increasing Nξ or
Nη (Nξ = 200, Nη = 160). Figures 11, 12 and 13 show the results for Re = 875,
l = 2.67 and Lχ = 0.59. It is worth pointing out that an analysis of the time
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Figure 10. Stable �, unstable � and marginal two-dimensional oscillatory flows over steep ripples
for h/l = 0.12. Curve A has been derived by Hara & Mei (1990a) for large values of l. Curve B is
a heuristic adaptation of curve A.

development of the spanwise vorticity component shows that for these values of the
parameters the viscous boundary layer remains attached to the ripple surface. The
time behaviour of Eχ is plotted in figure 11 and shows that a steady oscillatory state
is reached by the flow after about 45 cycles. From figure 12, where the streamwise
component of vorticity ωx is plotted at the same time in three vertical planes
parallel to a ripple crest and close to it, it can be seen that the inception of a
three-dimensional flow is associated with the appearance of Taylor–Görtler vortices.
Indeed, the three-dimensional character of the flow is due to the presence of streamwise
vorticity which is generated mainly around the crests where the radius of curvature
is maximum. At the beginning of the simulation, the generation of streamwise
vortices takes place during a small part of the cycle when the free-stream velocity
is maximum. However, figure 13, where ωx is plotted during the 45th cycle, shows
that once generated, Taylor–Görtler vortices survive for more than half a cycle and
are convected by the external velocity along the ripple surface, eventually leaving
it at a ripple trough and originating a complex flow. Hence, for large times the
generation of streamwise vorticity also takes place for phases different from t = π/2
and t = 3π/2.

4. Strong oscillatory flow over steep ripples
Up to now the growth of initially small three-dimensional perturbations of the

two-dimensional oscillatory flow over ripples has been simulated by choosing the
parameters of the problem close to the values analysed by Hara & Mei (1990a), even
though some of their assumptions have been removed in order to investigate the
effects of significant nonlinearity. In this section, we present some results obtained
by fixing the parameters close to the values characterizing actual ripples even though
only moderate values of the Reynolds number can be simulated. In particular, ripple
steepness (h∗/l∗) has been fixed equal to 0.14 and the ratio between the amplitude
of fluid displacement oscillations and ripple wavelength is set equal to 0.75, a value
close to that observed in the field. Lastly, the Reynolds number is equal to 1005. Even
though actual ripples are characterized by larger values of Re, we feel that the results
obtained can provide useful information to help understand the flow generated by
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Figure 11. Time development of Eχ for l = 2.67, h = 0.32, Re = 875, Lχ = 0.59.
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Figure 12. Streamwise component of vorticity ωx for l = 2.67, h = 0.12, Re = 875, Lχ = 0.59 at
t = π/2 in the planes (a) x = −0.20; (b) x = 0; (c) x = 0.20 (∆ωx = 0.07).

sea waves close to a rippled bed. First, the width of the computational box in the
spanwise direction has been fixed equal to 0.66 while Lξ and Lη are equal to l. A
perturbation periodic in the χ-direction with a wavelength equal to Lχ and a small
amplitude was introduced at the beginning of the simulation. The value Lχ = 0.66
was chosen because it is close to the wavelength of the transverse perturbations which
are expected to be the most unstable according to Hara & Mei’s (1990a) analysis.
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Figure 13. Streamwise component of vorticity ωx for l = 2.67, h = 0.32, Re = 875, Lχ = 0.59 in the
plane χ = 0.11 during the 15th period (t = π/4, ∆ωx = 0.2).

The numerical code was run with Nξ = 64, Nη = 80, Nχ = 32 and a value of the
stretching parameter such that the size of the first numerical cell is smaller than
0.1δ∗.

A preliminary investigation of the two-dimensional flow has shown that for these
values of the parameters the flow is characterized by a chaotic behaviour (see the
results described in Vittori & Blondeaux 1991). However, even though the velocity
field does not repeat exactly after a wave period, the gross features of vorticity
time development do not differ greatly from one cycle to the other. For this reason,
in the following, the flow behaviour is described during the 14th cycle when a
steady oscillatory state is attained by the flow and the value of t given in figure
captions gives the phase within the cycle. In figure 14 the χ-component of vorticity
is shown in a vertical plane characterized by χ = 0.33 at different phases of the
cycle. The formation of a vortex pair can be easily recognized similarly to the two-
dimensional case (compare figure 14 with figure 3). However, the three-dimensional
case is characterized by the formation of a three-dimensional vortex structure similar
to a mushroom vortex. Indeed, the shear layer generated at the ripple crest becomes
wavy in the χ-direction as it leaves the ripple crest. This behaviour is evident in
figure 15(a) where ωχ is plotted in a vertical plane parallel to ripple crests. The
shear layer is close to the bottom for χ = 0 and χ = Lχ, while in the middle of the
computational cell it tends to leave the ripple surface. This behaviour is induced by the
appearance of a significant component of vorticity in the streamwise direction which
creates a vertical upwards motion of the fluid in the middle of the computational
cell (see figure 15b). Ejection of vorticity towards the irrotational region is thus
observed. Secondary velocity components also originate in a horizontal plane and
the vortex pair is accelerated in the centre of the box and retarded at the sides.
Of course, vorticity dynamics has a large influence on the convection of sediment
and on erosion/deposition processes which control bottom morphology. To gain an
idea of the trajectories of loose particles, in figure 16 the subsequent locations of
passive tracers released at t = 28π close to the ripple crest are plotted in the (x, z)-,
(x, y)- and (y, z)-planes. It appears that the action of the vortex structure, created
by boundary layer separation and the roll-up of vorticity, tend to lift particles from
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Figure 15. (a) Spanwise component of vorticity ωχ at t = π/2 for l = 1.333, h = 0.187, Re = 1005,
Lχ = 0.66 in the plane x = 1 (∆ωx = 3.5). (b) Flow at t = π/2 in the plane x = 1 for l = 1.333,
h = 0.187, Re = 1005, Lχ = 0.66.

the bottom and create a sort of sediment jet in the centre of the computational
box.

Since the size of the three-dimensional vortex structure which is originated by the
instability of two-dimensional flow is equal to the width Lχ of the computational box,
the results obtained cannot be assumed to describe the actual flow field. A further
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Figure 16. Subsequent locations of passive tracers released just above the crest at ti = 28π for
l = 1.333, h = 0.187, Re = 1005, Lχ = 0.66. (1) t = ti + π/8; (2) t = ti + π/4; (3) t = ti + 3π/8;
(4) t = ti + π/2; (5) t = ti + 5π/8.

simulation was performed for the same values of the parameters but fixing Lχ = 3.3
and introducing an initial perturbation of small amplitude but with many periodic
components in the χ-direction. Moreover, the value of Nχ was increased from 32 to
100. In this new simulation, the χ-dependence of the solution is no longer regular.
From figure 17, where the streamwise component of vorticity is plotted in a plane
parallel to the ripple surface and in the vertical plane x = 0, the appearance of
vorticity streaks is evident. The velocity which is induced in the vertical direction by
these vortex structures tends to carry slow fluid from the wall towards the irrotational
region and fluid characterized by large momentum towards the bottom, thus creating
a large and efficient mixing. The establishment of a three-dimensional flow field
characterized by small vortex structures has a great impact on sediment dynamics.
Similarly to figure 16, figure 18 shows the subsequent locations of passive tracers
released at the beginning of the cycle close to the ripple crest. Even though sediment
particles are not simply convected because of their inertia and because of gravity
force, figure 18 suggests that the sediments, which are piled up at the ripple crests
by the action of the main two-dimensional vortex structures, are then lifted up and
ejected into the flow also by the action of the three-dimensional structures, which
create an additional strong mixing and hence increase dispersion effects.

5. Conclusions
Numerical simulations of Navier–Stokes and continuity equations have clarified

the process by which the oscillatory flow over two-dimensional ripples attains a
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Figure 17. Streamwise component of vorticity ωξ for l = 1.333, h = 0.187, Re = 875, Lχ = 3.3 at
t = π/4: (a) in the plane η = 0.055, (∆ωξ = 1); (b) in the plane x = 0 (∆ω0 = 1.2).

three-dimensional configuration. In particular, the analysis by Hara & Mei (1990a),
who considered ripples of small amplitude or weak flows, has been extended by
tackling the problem for steeper ripples and stronger flows. The nonlinear terms
ignored by Hara & Mei (1990a) have different effects depending on the values of
the parameters. When fluid displacement is comparable with ripple wavelength and
spatially three-dimensional subharmonic pertubations are considered, flow separa-
tion and the presence of a free shear layer have a destabilizing effect and the flow
becomes more easily three-dimensional. On the other hand, when the fluid displace-
ment is small and Taylor–Görtler vortices tend to appear, nonlinear effects make the
two-dimensional flow more stable. The simulation of the three-dimensional flow for
values of the paramenters characterizing actual ripples is beyond the power of present
computers.

An attempt to simulate the flow over sea ripples has been performed, but only
moderate values of the Reynolds number have been considered. Vorticity dynamics
is characterized by the appearance of mushroom vortices originated by the three-
dimensional instability of the shear layer generated by boundary layer separation at
ripple crests. The appearance of three-dimensional vortex structures increases mixing
processes and the flow can more easily put into suspension loose particles lying on the
bottom. To understand sediment dynamics at the bottom of sea waves a Lagrangian
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Figure 18. Subsequent locations of passive tracers released just above the crest at ti = 24π for
l = 1.333, h = 0.187, Re = 1005, Lχ = 3.3. (1) t = ti + π/8; (2) t = ti + π/4; (3) t = ti + 3π/8;
(4) t = ti + π/2; (5) t = ti + 5π/8.

simulation of the phenomenon could be attempted. However, before attempting such
simulation the study of the flow over a rough wall and a moving boundary should be
performed.
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e della Ricerca Scientifica e Tecnologica and to the University of Genova who partially
supported the research project through contracts Cofin 97 Morfodinamica fluviale
e Costiera and Processi vorticosi, turbolenti, caotici – Applicazioni impiantistiche ed
ambientali.

REFERENCES

Akhavan, R., Kamm, R. D. & Shapiro, A. H. 1991 An investigation of transition to turbulence in
bounded oscillatory Stokes flow. Part 2. Numerical simulations. J. Fluid Mech. 225, 423–444.

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.

Blondeaux, P. 1990 Sand ripples under sea waves. Part 1. Ripple formation. J. Fluid Mech. 218,
1–17.

Blondeaux, P. & Vittori, G. 1991 Vorticity dynamics in an oscillatory flow over a rippled bed.
J. Fluid Mech. 226, 257–289.

Blondeaux, P. & Vittori, G. 1999 Boundary layer and sediment dynamics under sea waves. Adv.
Coastal Ocean Engng 4, 133–190.

Craik, A. D. D. 1971 Non-linear resonant instability in boundary layers. J. Fluid Mech. 50, 393–413.



378 P. Scandura, G. Vittori and P. Blondeaux

Feigenbaum, M. J. 1978 Quantitative universality for a class of nonlinear transformation. J. Statist.
Phys. 19, 25–32.

Feigenbaum, M. J. 1979 The onset spectrum of turbulence. Phys. Lett. A 74, 375–378.

Feigenbaum, M. J. 1980 The transition to aperiodic behaviour in turbulent systems. Commun. Math.
Phys. 77, 65–86.

Hall, P. 1984 On the stability of the unsteady boundary layer on a cylinder oscillating transversely
in a viscous fluid. J. Fluid Mech. 146, 347–367.

Hansen, E. A., Fredsøe, J. & Deigaard, R. 1994 Distribution of suspended sediment over wave
generated ripples. J. Waterway, Port, Coastal Ocean Engng 120, 37–55.

Hara, T. & Mei, C. C. 1990a Centrifugal instability of an oscillatory flow over periodic ripples.
J. Fluid Mech. 217, 1–32.

Hara, T. & Mei, C. C. 1990b Oscillating flow over periodic ripples. J. Fluid Mech. 211, 183–209.

Harlow, H. & Welch, J. E. 1965 Numerical calculation of time-dependent viscous incompressible
flow of fluid with free surface. Phys. Fluids 8, 2182–2189.

Honji, H. 1975 Streaked flow around an oscillating circular cylinder. J. Fluid Mech. 69, 229–240.

Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes
equation. J. Comput. Phys. 59, 308–323.

Longuet–Higgins, M. S. 1981 Oscillating flow over steep sand ripples. J. Fluid Mech. 107, 1–35.

Mei, C. C. & Liu, P. L. F. 1993 Surface waves and coastal dynamics. Ann. Rev. Fluid. Mech. 25,
215–240.

Nielsen, P. 1979 Some basic concepts of wave sediment transport. Ser. Paper 20, Inst. Hydrodyn.
Hydraul. Engng Tech. Univ. Denmark, 160 pp.

Orlandi, P. 1989 A numerical method for direct simulation of turbulence in complex geometries.
Annual Research Brief 215. Center for Turbulence Research.

Sato, S., Mimura, N. & Watanabe, A. 1984 Oscillatory boundary layer flow over a rippled bed.
Proc. XIX Conf. on Coastal Engng, Houston, pp. 2293–2309. ASCE.

Shum, K. T. 1988 A numerical study of vortex dynamics over rigid ripples. PhD thesis, MIT Dept.
Civil Engng.

Sleath, J. F. A. 1974 A numerical study of the influence of bottom roughness on mass transport
by water waves. In Numerical Methods in Fluid Dynamics (ed. C. A. Brebbia & J. J. Connor).
Pentech Press.

Sleath, J. F. A. 1984 Sea Bed Mechanics. Wiley.

Sleath, J. F. A. & Ellis, A. C. 1978 Ripple geometry in oscillatory flow. CUED/A – Hydraulics/TR2.
University of Cambridge. Engineering Department.

Smith, P. A. & Stansby, P. K. 1985 Wave-induced bed flows by a Lagrangian vortex scheme.
J. Comput. Phys. 60, 489–516.

Vittori, G. 1989 Nonlinear viscous oscillatory flow over a small amplitude wavy wall. J. Hydraul.
Res. 27, 267–280.

Vittori, G. & Blondeaux, P. 1991 A route to chaos in an oscillatory flow: Feigenbaum scenario.
Phys. Fluids A 3, 2492–2495.

Vittori, G. & Blondeaux, P. 1992 Sandy ripples under sea waves. Part 3. Brick-pattern ripple
formation. J. Fluid Mech. 239, 23–45.

Vittori, G. & Verzicco, R. 1998 Direct simulation of transition in an oscillatory boundary layer.
J. Fluid Mech. 371, 207–232.


